Acta Crystallographica Section E

Structure Reports

 OnlineISSN 1600-5368

Shan Gao, ${ }^{\text {Ji-Wei Liu, Li-Hua }}$
Huo, Hui Zhao and Jing-Gui Zhao

School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China

Correspondence e-mail:
shangao67@yahoo.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.033$
$w R$ factor $=0.085$
Data-to-parameter ratio $=15.5$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

catena-Poly[[[aqua(1,10-phenanthroline- $\left.\kappa^{2} N, N^{\prime}\right)$ -copper(II)]- μ-benzene-1,4-dioxyacetato- $\left.\kappa^{3} O, O^{\prime}: O^{\prime \prime}\right]$ monohydrate]

Each $\mathrm{Cu}^{\mathrm{II}}$ atom in the title coordination polymer, $\{[\mathrm{Cu}(1,4-$ BDOA $)($ phen $\left.\left.)\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \cdot \mathrm{H}_{2} \mathrm{O}\right\}_{n}$ [where $1,4-\mathrm{BDOA}^{2-}$ is the benzene-1,4-dioxyacetate dianion $\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{O}_{6}{ }^{2-}\right)$ and phen is 1,10-phenanthroline $\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)$], shows a distorted octahedral coordination geometry, defined by three carboxyl O-atom donors from the benzene-1,4-dioxyacetate ligand, two N -atom donors from the phen ligand and one water molecule. The $\mathrm{Cu}^{\mathrm{II}}$ ions are bridged by carboxylate groups, forming a onedimensional chain structure. The $\mathrm{Cu} \cdots \mathrm{Cu}$ separation within the polymer is 11.325 (2) \AA. Furthermore, the chains are linked into a three-dimensional supramolecular network via hydrogen bonds and $\pi-\pi$ stacking interactions.

Comment

The rational design and construction of aromatic carboxylate coordination polymers is a rapidly developing research area of supramolecular chemistry, within which ligand design is an important aspect in adjusting the coordination framework and functionalities of the compounds formed. In contrast with the extensively studied coordination compounds with rigid ligands such as terephthalic acid and benzene tetracarboxylic acid (Lee et al., 2003; Gomez-Lor et al., 2002; Gutschke et al., 2001), the coordination chemistry and structural properties of flexible multidentate ligands with versatile binding modes, such as benzene-1,4-dioxyacetic acid, have received little attention to date. As a contribution to this work, we have reported the structures of a number of mononuclear complexes incorporating this ligand, namely $\left[\mathrm{MnCl}(1,10 \text {-phenanthroline })_{2}{ }^{-}\right.$ $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}(1,4-\mathrm{BDOA}) \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (Gao, Liu, Huo et al., 2004), $\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right](1,4-\mathrm{BDOA})(\mathrm{Liu}, \mathrm{Huo}, \mathrm{Gao}, \mathrm{Zhao} \& \mathrm{Ng}, 2004)$, $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right](1,4-\mathrm{BDOA})$ (Liu, Gao et al., 2004), [Co(triethanolamine) $\left.)_{2}\right](1,4-\mathrm{BDOA})(\mathrm{Gao}$, Liu, Huo \& Ng , 2004) and polymeric $\left\{[\mathrm{Cu}(1,3-\mathrm{BDOA})(\text { bipy })] \cdot \mathrm{H}_{2} \mathrm{O}\right\}_{n}$ (bipy is $2,2^{\prime}-$ bipyridine), in which the $\mathrm{Cu}^{\mathrm{II}}$ atom exhibits a square-pyramidal geometry and possesses an infinite zigzag chain structure (Liu, Huo, Gao, Zhao et al., 2004). In the present work, we have isolated a new $\mathrm{Cu}^{\text {II }}$ complex, $\{[\mathrm{Cu}(1,4-B D O A)$ (phen) $\left.\left.\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \cdot \mathrm{H}_{2} \mathrm{O}\right\}_{n}$, (I), where $1,4-\mathrm{BDOA}^{2-}$ is the benzene-1,4-dioxyacetate dianion, and report its crystal structure here.

Received 30 July 2004
Accepted 3 August 2004
Online 7 August 2004

Figure 1
A view of the title complex, showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. [Symmetry code: (i) $\left.x-1, \frac{1}{2}-y, z-\frac{1}{2}\right]$.

The asymmetric unit of (I) consists of a mononuclear complex, $\left[\mathrm{Cu}(1,4-\mathrm{BDOA})(\right.$ phen $\left.)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$, and one water molecule of crystallization (Fig. 1). The 1,4-BDOA ligand acts as both a bidentate chelating ligand, through atoms O 1 and O 2 , and a monodentate bridging ligand, through atom O5. Each $\mathrm{Cu}^{\text {II }}$ atom is six-coordinate in a distorted octahedral environment, of which the equatorial plane is defined by atoms O 1 and O 2 from the $1,4-\mathrm{BDOA}$ ligand, atom N 2 from the phen ligand and the coordinated water molecule [r.m.s. deviation 0.06 (2) \AA; ; deviation of the Cu atom from this plane 0.04 (2) \AA A . The axial positions are occupied by atom $\mathrm{O} 5^{i}$ from the 1,4 -BDOA group [symmetry code: (i) $x-1, \frac{1}{2}-y, z-\frac{1}{2}$] and the phen atom $\mathrm{N} 1\left[\mathrm{O} 5^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{N} 1171.94(6)^{\circ}\right]$. The phen molecule acts as a terminal ligand, with a typical mean $\mathrm{Cu}-\mathrm{N}$ distance $[2.020(2) \AA]$. It should be noted that the $\mathrm{Cu}-\mathrm{O} 2$ distance of 2.812 (2) \AA is considerably longer, indicative of weaker interaction with the Cu (Billing et al., 1970). The O1$\mathrm{C} 13[1.265(2) \AA$ A $]$ and $\mathrm{O} 5-\mathrm{C} 22[1.278(2) \AA]$ distances are longer than the $\mathrm{O} 2-\mathrm{C} 13 \quad[1.234(2) \AA]$ and $\mathrm{O} 6-\mathrm{C} 22$ [1.234 (2) \AA] distances, in accord with the greater doublebond character of the latter bonds.

The bridging of the the $\mathrm{Cu}^{\mathrm{II}}$ ions by the carboxylate groups of the $1,4-$ BDOA ligand results in the formation of a onedimensional chain along the c axis. The antiparallel phen ligands lie on alternate sides of the chain. The shortest $\mathrm{Cu} \cdots \mathrm{Cu}$ distance in the chain is 11.325 (2) \AA, slightly longer than the value of 11.284 (3) \AA in the one-dimensional copper polymer with the terephthalate ligand (Bian et al., 2003).

The bidentate oxyacetate group and the benzene ring are almost coplanar, with a $\mathrm{C} 15-\mathrm{O} 3-\mathrm{C} 14-\mathrm{C} 13$ torsion angle of 172.1 (2) ${ }^{\circ}$. In contrast, the monodentate oxyacetate group is twisted out of the benzene ring plane, with a $\mathrm{C} 18-\mathrm{O} 4-\mathrm{C} 21-$ C22 torsion angle of $-70.2(2)^{\circ}$. The benzene ring is nearly perpendicular to the plane of the phen ligand, with a dihedral angle of $87.3(1)^{\circ}$. In addition, the chains are connected through extensive hydrogen bonds, involving the coordinated and uncoordinated water molecules and the 1,4 -BDOA

Figure 2
A packing diagram for (I), viewed down the c axis.
groups, with $\mathrm{O} \cdots \mathrm{O}$ distances ranging from 2.689 (2) to 3.179 (2) \AA and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ angles ranging from 132 (2) to 170 (3) ${ }^{\circ}$ (Table 2). There are face-to-face $\pi-\pi$ stacking interactions between the benzene rings, at 3.611 (3) \AA. With the help of such interactions, the polymeric chains assemble to form a three-dimensional supramolecular network (Fig. 2).

Experimental

Benzene-1,4-dioxyacetic acid was prepared according to the method described for the synthesis of benzene-1,2-dioxyacetic acid by Mirci (1990). The title complex was prepared by the addition of a stoichiometric amount of $\mathrm{Cu}(\text { acetate })_{2} \cdot \mathrm{H}_{2} \mathrm{O}(4.00 \mathrm{~g}, 20 \mathrm{mmol}), \mathrm{NaOH}$ $(1.60 \mathrm{~g}, 40 \mathrm{mmol})$ and 1,10-phenanthroline ($3.98 \mathrm{~g}, 20 \mathrm{mmol}$) to a hot aqueous solution of $1,4-\mathrm{BDOAH}_{2}(4.52 \mathrm{~g}, 20 \mathrm{mmol})$, with subsequent filtration. Blue crystals of (I) were obtained after allowing the mixture to stand at room temperature for several days. Analysis, calculated for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{Cu}$: C 52.43, H 4.00, N 5.56\%; found: C 52.65, H 4.08, N 5.70\%.

Crystal data

$\left[\mathrm{Cu}\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{O}_{6}\right)\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \cdot-$
$\quad \mathrm{H}_{2} \mathrm{O}$
$M_{r}=503.95$
Monoclinic, $P 2_{1} / c$
$a=7.2444(14) \AA$
$b=16.089(3) \AA$
$c=18.276(4) \AA$
$\beta=98.85(3)^{\circ} \AA$
$V=2104.8(7) \AA^{3}$
$Z=4$

$D_{x}=1.590 \mathrm{Mg} \mathrm{m}^{-3}$

Mo $K \alpha$ radiation
Cell parameters from 12433
reflections
$\theta=3.2-27.5^{\circ}$
$\mu=1.09 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, blue
$0.39 \times 0.25 \times 0.19 \mathrm{~mm}$

Data collection

Rigaku R-AXIS RAPID
diffractometer
ω scans
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)
$T_{\text {min }}=0.676, T_{\text {max }}=0.819$
20006 measured reflections

Refinement

[^0]Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{Cu} 1-\mathrm{N} 1$	$2.004(2)$	$\mathrm{Cu} 1-\mathrm{O} 7$	$2.280(2)$
$\mathrm{Cu} 1-\mathrm{N} 2$	$2.036(2)$	$\mathrm{O} 1-\mathrm{C} 13$	$1.265(2)$
$\mathrm{Cu} 1-\mathrm{O} 1$	$1.968(1)$	$\mathrm{O} 2-\mathrm{C} 13$	$1.234(2)$
$\mathrm{Cu} 1-\mathrm{O} 2$	$2.812(2)$	$\mathrm{O} 5-\mathrm{C} 22$	$1.278(2)$
$\mathrm{Cu} 1-\mathrm{O} 5^{\mathrm{ii}}$	$1.949(1)$	$\mathrm{O} 6-\mathrm{C} 22$	$1.234(2)$
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 2$	$81.40(6)$	$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O} 7$	$92.94(6)$
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{O} 2$	$91.24(7)$	$\mathrm{O} 5^{\mathrm{ii}}-\mathrm{Cu} 1-\mathrm{N} 1$	$171.94(6)$
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{O} 7$	$93.30(6)$	$\mathrm{O}^{\mathrm{ii}}-\mathrm{Cu} 1-\mathrm{N} 2$	$90.54(6)$
$\mathrm{N} 2-\mathrm{Cu} 1-\mathrm{O} 2$	$103.54(6)$	$\mathrm{O}^{\mathrm{ii}}-\mathrm{Cu} 1-\mathrm{O} 1$	$95.13(6)$
$\mathrm{N} 2-\mathrm{Cu} 1-\mathrm{O} 7$	$112.00(7)$	$\mathrm{O}^{\mathrm{ii}}-\mathrm{Cu} 1-\mathrm{O} 2$	$90.49(6)$
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 1$	$92.12(6)$	$\mathrm{O} 5^{\mathrm{ii}}-\mathrm{Cu} 1-\mathrm{O} 7$	$89.86(6)$
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 2$	$154.45(6)$	$\mathrm{O} 7-\mathrm{Cu} 1-\mathrm{O} 2$	$144.46(6)$
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O} 2$	$51.65(6)$		

Symmetry code: (ii) $1+x, \frac{1}{2}-y, \frac{1}{2}+z$.

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 7-\mathrm{H} 23 A \cdots \mathrm{O} 2^{\text {iv }}$	0.85 (3)	1.98 (3)	2.731 (2)	147 (3)
$\mathrm{O} 7-\mathrm{H} 23 A \cdots \mathrm{O}^{\text {iv }}$	0.85 (3)	2.55 (2)	3.179 (2)	132 (2)
$\mathrm{O} 7-\mathrm{H} 23 \mathrm{~B} \cdots \mathrm{O}^{\text {ii }}$	0.85 (3)	1.92 (3)	2.689 (2)	151 (2)
$\mathrm{O} 8-\mathrm{H} 24 A \cdots \mathrm{O}^{\text {ii }}$	0.85 (3)	2.17 (3)	3.013 (2)	170 (3)
$\mathrm{O} 8-\mathrm{H} 24 B \cdots \mathrm{O} 7^{\text {iii }}$	0.86 (3)	2.19 (3)	3.040 (3)	168 (3)

Symmetry codes: (ii) $1+x, \frac{1}{2}-y, \frac{1}{2}+z$; (iii) $x-1, y, z$; (iv) $1+x, y, z$.
The H atoms of the water molecules were located in a difference map and refined with $\mathrm{O}-\mathrm{H}$ and $\mathrm{H} \cdots \mathrm{H}$ distance restraints of 0.85 (1) and $1.39(1) \AA$, respectively, and with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O})$. C-bound H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$, and were refined in the riding-model approximation.

Data collection: RAPID AUTO (Rigaku, 1998); cell refinement: RAPID AUTO; data reduction: CrystalStructure (Rigaku/MSC,
2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

The authors thank the National Natural Science Foundation of China (grant No. 20101003), the Heilongjiang Province Natural Science Foundation (grant No. B0007), the Outstanding Teacher Foundation of Heilongjiang Province and Heilongjiang University for supporting this work.

References

Bian, H. D., Xu, J. Y., Gu, W., Yan, S. P., Liao, D. Z., Jiang, Z. H. \& Cheng, P. (2003). Inorg. Chem. Commun. 6, 573-576.

Billing, D. E., Hathaway, B. J. \& Nicholls, P. J. (1970). J. Chem. Soc. A, pp. 1877-1890.
Gao, S., Liu, J. W., Huo, L. H. \& Ng, S. W. (2004). Acta Cryst. E60, m462-m464.
Gao, S., Liu, J. W., Huo, L. H., Zhao, H. \& Zhao, J. G. (2004). Acta Cryst. E60, m113-m115.
Gomez-Lor, B., Gutiérrez-Puebla, E., Iglesias, M., Monge, M. A., Ruiz-Valero, C. \& Snejko, N. (2002). Inorg. Chem. 41, 2429-2431.

Gutschke, S. O. H., Price, D. J., Powell, A. K. \& Wood, P. T. (2001). Angew. Chem. Int. Ed. 10, 1920-1923.
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.
Lee, S. W., Kim, H. J., Lee, Y. K., Park, K., Son, J. H. \& Kwon, Y. U. (2003). Inorg. Chim. Acta, 353, 151-154.
Liu, J. W., Gao, S., Huo, L. H. \& Ng, S. W. (2004). Acta Cryst. E60, m439-m440.
Liu, J. W., Huo, L. H., Gao, S., Zhao, H. \& Ng, S. W. (2004). Acta Cryst. E60, m517-m518.
Liu, J. W., Huo, L. H., Gao, S., Zhao, H., Zhu, Z. B. \& Zhao, J. G. (2004). Wuji Huaxue Xuebao (Chin. J. Inorg. Chem.), 20, 707-710.
Mirci, L. E. (1990). Rom. Patent No. 0743205.
Rigaku (1998). RAPID AUTO. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

[^0]: Refinement on F^{2}
 $R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.033$
 $w R\left(F^{2}\right)=0.085$
 $S=1.04$
 4809 reflections
 310 parameters
 H atoms treated by a mixture of independent and constrained refinement

